Nucleon Spin \& Flavor Structure ... and Fragmentation too

N.C.R. Makins
Univ of Illinois at Urbana-Champaign

- Quark Models: how to think about the proton?
- Deep-Inelastic Scattering: parton distribution functions and fragmentation functions
- The Spin Puzzle and quark polarization
- Single-Spin Asymmetries: new structures within the proton and the fragmentation process

The Wacky World of Quarks

The Quark Model

Hadrons are composed of quarks with :
(1) flavor: u, c, t (charge $+2 / 3$) d, s, b (charge $-1 / 3$) (2) color: $R, G, B \quad 3$ spin: $1 / 2$

Each hadron observed in nature is white ("color singlet")

> Baryons 3-quark systems, with colors RGB
> Mesons quark + antiquark with colors CC

proton

neutron

The spectrum of observed hadrons is (roughly) explained:

Mesons: Spin 0	Mesons: Spin 1	Baryons:
$\pi^{+} u \bar{d}$	$\rho^{+} u \bar{d}$	Spin $\mathbf{1 / 2}$
$\pi^{-} d \bar{u}$	$\rho^{-} d \bar{u}$	$p u u d$
$\pi^{0} u \bar{u} \oplus d \bar{d}$	$\rho^{0} u \bar{u} \oplus d \bar{d}$	$n u d d$
$K^{+} u \bar{s}$	$K^{*+} u \bar{s}$	$\Sigma^{+} u u s$
$K^{-} s \bar{u}$	$K^{*-} s \bar{u}$	$\Sigma^{0} u d s$
$K^{0} d \bar{s}$	$\frac{K^{* 0}}{} d \bar{s}$	$\Sigma^{-} d d s$
$\overline{K^{0}} s \bar{d}$	$\Lambda u d s$	
$\eta \quad u \bar{u} \oplus d \bar{d} \oplus s \bar{s}$	$K^{* 0} s \bar{d}$	$\Xi^{0} u s s$
$\eta^{\prime} u \bar{u} \oplus d \bar{d} \oplus s \bar{s}$	$\omega \quad u \bar{u} \oplus d \bar{d} \oplus s \bar{s}$	$\Xi^{-} d s s$

N.C.R. Makins, NNPSS, July 28, 2006

Hadronic Multiplets

- MESONS $=q \bar{q}$

- $\operatorname{BARYONS}=q q q$ or $\overline{q q q}$

N.C.R. Makins, NNPSS, July 28, 2006

Murray Gell-Mann, 1964:

"A search for stable quarks ... at the highest energy accelerators would help
to reassure us of the non-existence of real quarks."

Electron Scattering and Scaling

Elastic scattering from the proton: $\frac{e^{\prime}}{}$ Deep-Inelastic scattering (DIS):

Parton Distribution Functions

Let's look inside the proton: Deep-Inelastic Scattering (DIS) with high energy beams \Rightarrow a rich substructure is revealed!

sea quarks : virtual quark-antiquark pairs that fluctuate in and out of the vacuum!
gluons : carriers of the strong force
\boldsymbol{X} fraction of proton momentum carried by struck quark
$\boldsymbol{q}(\boldsymbol{x})$ parton distribution func ${ }^{n}$ (number density for quark flavor q)

3 constituent quarks of mass $\approx 350 \mathrm{MeV}$
∞ many current quarks with bare masses $\approx 5 \mathrm{MeV}$

Quantum Chromodynamics

The Theory of the Strong Interaction

$$
\mathcal{L}_{\mathrm{QCD}}=-\Psi\left\{\gamma_{\mu}\left[\partial_{\mu}-\frac{i}{2} g \lambda^{a} A_{\mu}^{a}(x)\right]+M\right\} \Psi-\frac{1}{4} \mathcal{F}_{\mu \nu}^{a} \mathcal{F}_{\mu \nu}^{a}
$$

The End.

Bound States in QED and QCD

QED
Coupling $\alpha=1 / 137$ is weak at relevant scales
\checkmark Perturbation theory works very well
\checkmark Non-relativistic quantum mechanics ok e.g. Hydrogen: binding $\mathrm{E}=13.6 \mathrm{eV} \ll \mathrm{M}_{\text {elec }}=511 \mathrm{keV}$

Coupling α_{s} blows up at relevant scales!
\times Perturbation theory impossible
X Bound systems inherently relativistic
e.g. Proton: Mass $=938 \mathrm{MeV} \gg$ bare $\mathrm{m}_{\text {quark }}=5 \mathrm{MeV}$!

And here's something else we can't calculate ...

What Happens in a High Energy Collision

Confinement at Work!
Creation of hadrons from struck quark: the "fragmentation process"

Fragmentation Functions

Symmetries: favored / disfavored FF's for pions:
$D_{\mathrm{fav}}\left(\right.$ or $\left.D^{+}\right) \equiv D_{u}^{\pi^{+}}=D_{d}^{\pi^{-}}=D_{\bar{d}}^{\pi^{+}}=D_{\bar{u}}^{\pi^{-}}$
$D_{\mathrm{dis}}\left(\right.$ or $\left.D^{-}\right) \equiv D_{u}^{\pi^{-}}=D_{d}^{\pi^{+}}=D_{\bar{d}}^{\pi^{-}}=D_{\bar{u}}^{\pi^{+}}$ $D_{\mathrm{s}} \equiv D_{s}^{\pi^{+}}=D_{s}^{\pi^{-}}=D_{\bar{s}}^{\pi^{+}}=D_{\bar{s}}^{\pi^{-}}$

Semi-Inclusive Deep-Inelastic Scattering (SIDIS)

In SIDIS, a hadron \boldsymbol{h} is detected in coincidence with the scattered lepton:
Factorization of the cross-section:

The Distribution Function
momentum distribution of quarks q within their proton bound state
\Rightarrow lattice QCD progressing steadily

Large energies $\boldsymbol{\rightarrow} \boldsymbol{a}$ asymptotic freedom
\Rightarrow can calculate!
The perturbative part
Cross-section for elementary photon-quark subprocess

The Fragmentation Function

momentum distribution of hadrons h formed from quark q
\Rightarrow not even lattice can help ...

The Spin Puzzle

A particular puzzle: Where does the proton spin come from?

$$
q(x)=q^{\uparrow}(x)+q^{\downarrow}(x) \quad \Delta q(x)=q^{\uparrow}(x)-q^{\downarrow}(x)
$$

only three possibilities

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

(1) Quark polarization

$$
\Delta \Sigma \equiv \int d x(\Delta u(x)+\Delta d(x)+\Delta s(x)+\Delta \bar{u}(x)+\Delta \bar{d}(x)+\Delta \bar{s}(x)) \approx 20 \% \text { only }
$$

(2) Gluon polarization

$$
\Delta G \equiv \int d x \Delta g(x) \quad ?
$$

(3) Orbital angular momentum

In friendly, non-relativistic bound states like atoms \& nuclei (\& constituent quark model), particles are in eigenstates of L

$$
L_{k}=L_{4}+h_{2} \text { ? }
$$

Not so for bound, relativistic Dirac particles Noble " l " is not a good quantum number

Constituent Quark Model

Pure valence description: proton $=2 u+d$
Perturbative Sea Sea quark pairs from $g \rightarrow q \bar{q}$ should be flavor symmetric:

$$
\bar{u}=\bar{d}
$$

Non-perturbative models: alternate deg's of freedom ${ }^{\circ}$

Meson Cloud Models

Chiral-Quark Soliton Model

- quark degrees of freedom in a pion mean-field
- nucleon $=$ chiral soliton
- one parameter:
dynamically-generated quark mass
- expand in $1 / N_{c}$

$$
\bar{d}>\bar{u} \quad \sim \bar{u}_{R} u_{L} \bar{d}_{R} d_{L}
$$

'tHooft instanton vertex

Quark sea from cloud of 0^{-}mesons: $\bar{d}>\bar{u}$

Spin Structure: SU(6) Proton Wave Function in CQM

The 3 quarks are identical fermions $\Rightarrow \psi$ antisymmetric under exchange

$$
\psi=\psi(\text { color }) * \psi(\text { space }) * \psi(\text { spin }) * \psi(\text { flavor })
$$

(1) Color: All hadrons are color singlets = antisymmetric

$$
\psi(\text { color })=1 / \sqrt{ } 6(\mathrm{RGB}-\mathrm{RBG}+\mathrm{BRG}-\mathrm{BGR}+\mathrm{GBR}-\mathrm{GRB})
$$

(2) Space: proton has $l=l^{\prime}=0 \rightarrow \psi($ space $)=$ symmetric
(3) Spin: $2 \otimes 2 \otimes 2=\left(3_{\mathrm{S}} \oplus 1_{\mathrm{A}}\right) \otimes 2=4_{\mathrm{S}} \oplus 2_{\mathrm{MS}} \oplus 2_{\mathrm{MA}}$

- 4_{S} symmetric states have spin $3 / 2$, e.g. $\left|\frac{3}{2},+\frac{3}{2}\right\rangle=\uparrow \uparrow \uparrow$
- 2_{MS} and 2_{MA} have spin $1 / 2$ and mixed symmetry: S or A under exchange of first 2 quarks only, e.g.

$$
\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{\mathrm{MS}}=(\uparrow \downarrow \uparrow+\downarrow \uparrow \uparrow-2 \uparrow \uparrow \downarrow) / \sqrt{ } 6 \quad\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{\mathrm{MA}}=(\uparrow \downarrow \uparrow-\downarrow \uparrow \uparrow) / \sqrt{ } 2
$$

(4) Flavor: symmetry groups $\mathrm{SU}(2)$-spin and $\mathrm{SU}(3)$-color are exact ...

- strong force is flavor blind
- constituent q masses similar: $m_{u}, m_{d} \approx 350 \mathrm{MeV}, m_{s} \approx 500 \mathrm{MeV}$
$\Rightarrow \mathrm{SU}(3)$-flavor is approximate for u, d, s
SU(3)-flavor gives $3 \otimes 3 \otimes 3=10_{\mathrm{S}} \oplus 8_{\mathrm{MS}} \oplus 8_{\mathrm{MA}} \oplus 1_{\mathrm{A}}$
$>$ Proton: $\psi(\mathrm{s}=1 / 2)$ from spin $2_{\mathrm{MS}},{ }_{\mathrm{MA}} \otimes \psi(u u d)$ from flavor $8_{\mathrm{MS}},{ }_{\mathrm{MA}}$

$$
\left|p^{\uparrow}\right\rangle=\left(u^{\uparrow} u^{\downarrow} d^{\uparrow}+u^{\downarrow} u^{\uparrow} d^{\uparrow}-2 u^{\uparrow} u^{\uparrow} d^{\downarrow}+2 \text { permutations }\right) / \sqrt{18}
$$

> Count the number of quarks with spin up and spin down:

$$
\begin{array}{ll}
\left\langle p^{\uparrow}\right| \hat{N}\left(u^{\uparrow}\right)\left|p^{\uparrow}\right\rangle=\frac{30}{18}=\frac{5}{3} & \left\langle p^{\uparrow}\right| \hat{N}\left(d^{\uparrow}\right)\left|p^{\uparrow}\right\rangle=\frac{6}{18}=\frac{1}{3} \\
\left\langle p^{\uparrow}\right| \hat{N}\left(u^{\downarrow}\right)\left|p^{\uparrow}\right\rangle=\frac{6}{18}=\frac{1}{3} & \left\langle p^{\uparrow}\right| \hat{N}\left(d^{\downarrow}\right)\left|p^{\uparrow}\right\rangle=\frac{12}{18}=\frac{2}{3}
\end{array}
$$

- Quark contributions to proton spin are:

$$
\Delta u=N\left(u^{\dagger}\right)-N\left(u^{\downarrow}\right)=+\frac{4}{3} \quad \Delta d=N\left(d^{\dagger}\right)-N\left(d^{\downarrow}\right)=-\frac{1}{3}
$$

$$
\Rightarrow \Delta \Sigma=\Delta u+\Delta d+\Delta s=1
$$

CQM / SU(6) Scorecard

\checkmark Baryon Magnetic Moments
$\mu_{B}=\sum_{q} \mu_{q} \Delta q$ where $\mu_{q} \sim e_{q} / m_{q}$

- take constituent quark masses
- take $\mu_{u}=-2 \mu_{d}, \mu_{s}=2 \mu_{d} / 3$ and fit μ_{d} to data

B	Magnetic Moment		
p	$\left(4 \mu_{u}-\mu_{d}\right) / 3$	2.7	2.79
n	$\left(4 \mu_{d}-\mu_{u}\right) / 3$	-1.8	-1.91
Σ^{+}	$\left(4 \mu_{u}-\mu_{s}\right) / 3$	2.6	2.48
Σ^{-}	$\left(4 \mu_{d}-\mu_{s}\right) / 3$	-1.0	-1.16
Ξ^{0}	$\left(4 \mu_{s}-\mu_{u}\right) / 3$	-1.4	-1.25
Ξ^{-}	$\left(4 \mu_{s}-\mu_{d}\right) / 3$	-0.5	-0.68
Λ	μ_{s}	-0.6	-0.61
$\Lambda \Sigma^{0}$	$\left(\mu_{d}-\mu_{u}\right) / \sqrt{3}$	-1.6	-1.60

Note: $\mu_{B} \sim\left(e_{q} / m_{q}\right) \Delta q \sim\left|e_{q}\right|(\Delta q-\Delta \bar{q})$ \Rightarrow observable sensitive to valence quarks
\times Hyperon β-Decay

- parity-violating weak decay
- decay products parallel to spin
- sensitive to $\sum_{q}(\Delta q+\Delta \bar{q})$
\Rightarrow Constutent Quark Model lacks sea quarks

Spin Structure of the Proton

$$
\frac{1}{2}=\frac{1}{2} \Delta \Sigma+\Delta G+L_{q}+L_{g}
$$

Parton Distribution Functions

unpolarized: $\quad q(x)=q^{\uparrow}(x)+q^{\downarrow}(x)$
polarized: $\quad \Delta q(x)=q^{\uparrow}(x)-q^{\downarrow}(x)$
Constituent Quark Model
$\Delta u=+\frac{4}{3}, \Delta d=-\frac{1}{3} \rightarrow \Delta \Sigma=1$
Relativistic Quark Model

$$
\Delta \Sigma \simeq 0.60-0.75 \quad L_{q}=\frac{1}{2}(1-\Delta \Sigma)
$$

Polarized Deep-Inelastic Scattering

polarized nucleon

From NLO-QCD analysis of inclusive DIS measurements + hyperon β-decay ...

- $\Delta G=1.0_{-0.6}^{+1.9}$ (AB scheme)
\rightarrow barely constrained, value >0 favored

Anti-quark Spin in the Proton Sea

Meson Cloud Models
Li, Cheng, hep-ph/9709293

$\rightarrow \Delta q_{\text {valence }}>0$
$\rightarrow \Delta q_{\text {sea }}<0$
$\rightarrow \Delta \bar{q}=0$
"Higher-order" cloud of vector mesons can generate a small polarization.

Chiral-Quark Soliton Model

Light sea quarks polarized:

Goeke et al, hep-ph/0003324
Instanton Mechanism

'tHooft instanton vertex
$\sim \bar{u}_{R} u_{L} \bar{d}_{R} d_{L}$ transfers helicity from valence u quarks to $d \bar{d}$ pairs

Quark Helicity

Distributions $\Delta q(x)$: Results

Spin-Dependent Deep Inelastic Scattering (DIS)

Polarized lepton beams incident on polarized nucleon targets

The polarized virtual photon selects certain quark polarizations :

.. goes to

IMPOSSIBLE
... goes to ... quark!

Double spin asymmetries are measured :

$$
A_{1}=\frac{\sigma_{1 / 2}-\sigma_{3 / 2}}{\sigma_{1 / 2}+\sigma_{3 / 2}} \simeq \frac{g_{1}}{F_{1}}=\frac{\sum_{q} e_{q}^{2} \Delta q\left(x, Q^{2}\right)}{\sum_{q} e_{q}^{2} q\left(x, Q^{2}\right)}
$$

Polarized Semi-Inclusive DIS (SIDIS)

In SIDIS, a hadron h is detected in coincidence with the scattered lepton:

Flavor Tagging: Flavor content of observed hadron h is related to flavor of struck quark q via the fragmentation functions $D(z)$

Purity matrix $P_{q}^{h}=$ probability that hadron \boldsymbol{h} came from struck quark \boldsymbol{q}
Purities are spin-independent ... compute using Monte Carlo tuned to unpolarized data

Final Δq Measurement from HERMES Run 1

using polarized data 1996-2000:

$$
A_{1, p}, A_{1, p}^{\pi^{ \pm}}, A_{1, d}, A_{1, d}^{\pi^{ \pm}}, A_{1, d}^{K^{ \pm}}
$$

First 5-flavor fit to $\Delta q(x)$
No evidence of anti-quark polarization, or flavor-asymmetry thereof

N.C.R. Makins, NNPSS, July 28, ${ }_{2} 006$

New Analysis: Isoscalar extraction of Δs

Extract isoscalar combinations of $\Delta q(x)$:

$$
\begin{aligned}
& \Delta S(x) \equiv \Delta s(x)+\Delta \bar{s}(x) \\
& \Delta Q(x) \equiv \Delta u(x)+\Delta \bar{u}(x)+\Delta d(x)+\Delta \bar{d}(x)
\end{aligned}
$$

Asymmetries measured form isoscalar deuteron data:

- Inclusive purities are simple combinations of unpolarized PDFs.

$$
P_{Q}(x)=\frac{5 Q(x)}{5 Q(x)+2 S(x)}, P_{S}(x)=\frac{2 S(x)}{5 Q(x)+2 S(x)}
$$

-Kaon purities can be computed from the unpolarized K multiplicity assuming only charge symmetry in fragmentation.

$$
D_{q}^{K^{+}+K^{-}}(x)=D_{\bar{q}}^{K^{+}+K^{-}}
$$

Excellent agreement -- No MC Dependence

Single-Spín Asymmetries

Unpolarized PDF's

Polarized PDF's

$\leadsto \rightarrow \cdot=q(x) \leadsto \sim \rightarrow \odot \rightarrow-\leftrightarrow \rightarrow=\Delta q(x)$

So what's next?

N.C.R. Makins, NNPSS, July 28, 2006

Fermilab E704: $p^{\uparrow} p \rightarrow \pi X$ at 400 GeV

Huge single-spin asymmetry !

- Opposite sign for $\pi^{+}=u \bar{d}$ than for $\pi^{-}=d \bar{u}$
- Effect larger for forward production
- Observable: $\vec{S}_{\text {beam }} \cdot\left(\vec{p}_{\text {beam }} \times \vec{p}_{\pi}\right)$ odd under naive Time-Reversal

Surprising observation! Why?

SSA's at high-energies

Now confirmed at STAR at much higher energies

T-odd observables

SSA observables $\sim \overrightarrow{\mathbf{J}} \cdot\left(\overrightarrow{\mathbf{p}_{1}} \times \overrightarrow{\mathbf{p}_{2}}\right)$
\Rightarrow odd under naive time-reversal
Since QCD amplitudes are T-even, must arise from interference between spin-flip and non-flip amplitudes with different phases

Can't come from perturbative subprocess xsec:

- q helicity flip suppressed by m_{q} / \sqrt{s}
- need α_{s}-suppressed loop-diagram to generate necessary phase

At hard (enough) scales, SSA's must arise from soft physics: T-odd distribution /
fragmentation functions

SSA's at high-energies

Now confirmed at STAR at much higher energies

T-odd observables

SSA observables $\sim \overrightarrow{\mathbf{J}} \cdot\left(\overrightarrow{\mathbf{p}_{1}} \times \overrightarrow{\mathbf{p}_{2}}\right)$
\Rightarrow odd under naive time-reversal
Since QCD amplitudes are T-even, must arise
sme. different phases
Must be a new, spin-orbit structure either in the fragmentation process or within the proton itself

At hard (enough) scales, SSA's must arise from soft physics: T-odd distribution /
fragmentation functions

E704 Possible Mechanism \#1: The "Collins Effect"

Need an ordinary distribution function ... transversity

$\Delta q(x)$

$$
h_{1}(x)
$$

... with a new, T-odd "Collins" fragmentation function $H_{1}^{\perp}\left(z, p_{T}\right)$

E704 effect:

Transversity: The Third Structure Function

Proton
Matrix
Elements
vector charge $\langle P S| \bar{\psi} \gamma^{\mu} \psi|P S\rangle=\int_{0}^{1} d x q(x)-\bar{q}(x) \quad \rightarrow$ \# valence quarks axial charge $\langle P S| \bar{\psi} \gamma^{\mu} \gamma_{5} \psi|P S\rangle=\int_{0}^{1} d x \Delta q(x)+\Delta \bar{q}(x) \rightarrow$ net quark spin tensor charge $\langle P S| \bar{\psi} \sigma^{\mu \nu} \gamma_{5} \psi \mid P S \neq \int_{0}^{1} d x \delta q(x)-\delta \bar{q}(x) \rightarrow$???

Properties of Transversity

- In Non-Relativistic Case, boosts and rotations commute:

$$
\delta q(x)=\Delta q(x)
$$

... but bound quarks are highly relativistic in nature

- No Gluons

- Chiral Odd

Helicity flip amplitudes occur only at $\mathcal{O}\left(m_{q} / Q\right)$ in inclusive DIS ...

but they are observable in e.g. semi-inclusive reactions

Properties of Transversity

- In Non-Relativistic Case, boosts and rotations commute:

$$
\delta q(x)=\Delta q(x)
$$

... but bound quarks are highly relativistic in nature

- No Gluons

- Chiral Odd

Helicity flip amplitudes occur only at $\mathcal{O}\left(m_{q} / Q\right)$ in inclusive DIS ...

Angular momentum conservation: $\Lambda-\lambda=\Lambda^{\prime}-\lambda^{\prime}$
\Rightarrow transversity has no gluon component
\Rightarrow different Q^{2} evolution than $\Delta q(x)$

$$
\begin{gathered}
\text { tensor charge = } \\
\text { "pure valence" object } \\
\rightarrow \text { promising for LQCD } \\
\text { comparison? }
\end{gathered}
$$

E704 Possible Mechanism \#2: The "Sivers Effect"

Need the ordinary fragmentation function

$$
D_{1}(z)
$$

... with a new, T-odd "Sivers" distribution function $\quad f_{1 T}^{\perp}\left(x, k_{T}\right)$
Phenomenological model of Meng \& Chou:
Forward $\pi+$ produced from orbiting valence-u quark by recombination at front surface of beam protons

Functions surviving on integration over Transverse Momentum

The others are sensitive to intrinsic $\boldsymbol{k}_{\boldsymbol{T}}$ in the nucleon \& in the fragmentation process

Distribution Functions

Fragmentation Functions

Functions Odd under naive Time Reversal

One T-odd function required to produce single-spin asymmetries in SIDIS

The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like $f_{1 T}^{\perp}$ must arise from interference ... but a distribution function is just a forward scattering amplitude, how can it contain an interference?

Brodsky, Hwang, \& Schmidt 2002

can interfere with

and produce
a T-odd effect!
(also need $L_{z} \neq 0$)

It looks like higher-twist ... but no, these are soft gluons = "gauge links" required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are final (or initial) state interactions ... and may be process dependent! \Rightarrow new universality issues

e.g. Drell-Yan

Collins Function

$$
H_{1}^{\perp}\left(z, p_{T}\right)
$$

1

T-Odd observables require interference between a spinfilp and a non-filip amplitude

Favored / Disfavored Frag Functions
Sivers Function $f_{1 T}^{\perp}\left(x, k_{T}\right)$

$$
\begin{aligned}
& D_{\mathrm{fav}} \equiv D^{u \rightarrow \pi^{+}}=D^{d \rightarrow \pi^{-}}=\ldots \\
& D_{\mathrm{dis}} \equiv D^{u \rightarrow \pi^{-}}=D^{d \rightarrow \pi^{+}}=\ldots
\end{aligned}
$$

In Search of T-Odd Functions: HERMES Run 2

Electro-Production of Pions with Tranvserse Target

Switched from longitudinal to transverse target polarization in 2002 ... Measure dependence of pion production on two azimuthal angles

Electron beam defines scattering plane

with respect to scattering plane

Azimuthal angles measured around q vector ...
$\phi_{S}=$ target spin orientation
$\phi_{h=}$ pion ("hadron")direction

Separating the Collins \& Sivers Mechanisms

Collins mechanism

$$
\delta q(x) \otimes H_{1}^{\perp}\left(z, k_{T}\right) \Rightarrow \sin \left(\phi_{h}+\phi_{s}\right)
$$

Sivers mechanism

$$
f_{1 \mathrm{~T}}^{\perp}\left(x, k_{T}\right) \otimes D_{1}(z) \Rightarrow \sin \left(\phi_{h}-\phi_{s}\right)
$$

Measure azimuthal moments of SIDIS xsec to separate the mechanisms

Thanks to linear polarization of photon ...
Sivers: $\left(\phi_{h}-\phi_{S}\right)$
angle of pion relative initial quark spin
Collins: $\left(\phi_{h}+\phi_{S}\right)=\pi+\left(\phi_{h}-\phi_{S}\right)$
angle of pion relative of final quark spin

SSA Results 1:
 Collins Effect

Collins Moments for $\pi^{+} \pi^{-}$from 2002-2004 \mathbf{H}^{\uparrow} Data

It exists!

- First evidence for non-zero Collins function ... and transversity!
- Positive for π^{+}...

Negative and larger for π^{-}...

- Systematic error bands include acceptance and smearing effects, and contributions from unpolarized $<\cos (2 \phi)>$ and $<\cos (\phi)>$ moments

Understanding the Collins Effect

The Collins function exists! $\boldsymbol{\rightarrow}$ spin-orbit correlations in π formation Is the Artru mechanism responsible?

Why are the Collins π^{-}asymmetries so large?

DIS on proton target always dominated by u-quark scattering

$$
\begin{aligned}
& A_{\mathrm{Col}}^{\pi^{+}} \sim \delta u H_{1, \text { favored }}^{\perp} . . . \text { expect: positive } \\
& A_{\mathrm{Col}}^{\pi^{-}} \sim \delta u H_{1, \text { disfav }}^{\perp} \quad . . \text { expect: } \sim \text { zero }
\end{aligned}
$$

Data indicate disfavored CollinsFF is large \& negative!

Map out solution space ... find $\mathrm{H}_{\text {disfav }} \approx-\mathrm{H}_{\text {fav }}$

Interpretation of Collins Results

Lund model + ${ }^{3} P_{0}$ hypothesis once more:

Subleading pion

 heads out of page
leading $\pi^{+}=$favored transition, heads into page
subleading particle $\left(\right.$ prob $\left.\pi^{-}\right)=$disfavored transition, heads out of page

Perhaps $H_{\mathrm{dis}} \approx-H_{\mathrm{fav}}$ is not only reasonable, but likely?

Collins Global Fit: HERMES (H target) \& COMPASS (D target)

Efremov, Goeke, Schweitzer, hep-ph/0603054

Take $\mathbf{h}_{1}(\mathbf{x})$ from ChiralQuark Soliton Model:

Fit K_{T}-integrated favored and unfavored Collins FF to HERMES data:

$$
\begin{aligned}
& H_{1}^{\mathrm{fav}}=H_{1}^{u / \pi^{+}}=H_{1}^{d / \pi^{-}}=\ldots \\
& H_{1}^{\mathrm{unf}}=H_{1}^{u / \pi^{-}}=H_{1}^{d / \pi^{+}}=\ldots \\
& B_{\text {Gauss }}(z) \equiv 1 / \sqrt{1+z^{2}\left\langle\mathbf{p}_{h_{1}}^{2}\right\rangle /\left\langle\mathbf{K}_{H_{1}}^{2}\right\rangle} \\
& \text { Also } H_{1}^{\text {fav }} \approx-H_{1}^{\mathrm{unf}}
\end{aligned}
$$

Gives good fit to COMPASS!

Collins Global Fit: HERMES (ep) \& BELLE (e+e-)

Efremov, Goeke, Schweitzer, hep-ph/0603054

Fit BELLE z-dependent results to

$$
H_{1}^{\perp(1 / 2) a}(z)=C_{a} z D_{1}^{a}(z)
$$

$C_{\mathrm{tav}}=0.15, C_{\mathrm{unf}}=-0.45$ and so $H_{1}^{\mathrm{fav}} \approx-H_{1}^{\mathrm{unf}}$

$$
\begin{equation*}
\mathbf{A}_{\mathbf{U T}}^{\sin \left(\phi+\phi_{\mathbf{S}}\right)}(\mathbf{z}) \quad \text { for proton } \tag{a}
\end{equation*}
$$

Resulting
Collins FF also fit HERMES data well

$\mathbf{A}_{\mathbf{U T}}^{\sin \left(\phi+\phi_{\mathbf{S}}\right)}(\mathrm{z})$ for proton
(b)

N.C.R. Makins, NNPSS, July 28, 2006

SSA Results 2: Sivers Effect

Sivers Moments for $\pi^{+} \pi^{-}$from 2002-2004 H^{\dagger} Data

It exists too!

- First evidence for non-zero Sivers function!
- \Rightarrow presence of non-zero quark orbital angular momentum!
- Positive for π^{+}... Consistent with zero for π^{-}...
- Systematic error bands include acceptance and smearing effects, and contributions from unpolarized $<\cos (2 \phi)>$ and $<\cos (\phi)>$ moments

- assume no antiquark Sivers func: $\bar{q}_{T}(x)=0$
- unpol PDFs = GRV-LO, unpol FFs = Kretzer

$$
S_{u}=-0.81 \pm 0.07, \quad S_{d}=1.86 \pm 0.28
$$

Fits COMPASS deuterium data well! But a surprise! $\boldsymbol{S}_{\boldsymbol{d}} \gg \boldsymbol{S}_{\boldsymbol{u}}$!
e.g., large- N_{C} expectation: $u_{T}(x) \approx-d_{T}(x)$
$\mathrm{Hmm} \ldots S_{u}$ actually reflects $u_{T}-\bar{d}_{T} / 4$
$\ldots S_{d}$ actually reflects $d_{T}+4 \bar{u}_{T}$
Could Sivers (and L) be large for antiquarks?

Sivers Moments for Kaons from 2002-2004 Data

- Effect about equal for $\mathrm{K}^{-}=s \bar{u}$ and $\pi^{-}=\mathrm{d} \overline{\mathrm{u}} \rightarrow$ note: same antiquark \ldots
+ Effect seems larger for $\mathrm{K}^{+}=u \bar{s}$ than $\pi^{+}=u \bar{d}$ at $x \approx 0.1 \ldots$!
\rightarrow significant antiquark Sivers functions? and strongly flavor-dependent?

Conclusions

Quark and gluon polarization

quark polarization is positive, but much lower than CQM / bag model expections anti-quark polarization consistent with zero within measured range, including improved verification of $\Delta \mathrm{s} \approx 0$ data coming in from COMPASS and RHIC-Spin on Δ G ... so far a modest, positive value favoured ...

Collins fragmentation function

opposite sign and similar magnitude to favored function sign of effect supports ${ }^{3} P_{0}$ picture of color string breaking result now confirmed by new data from BELLE, + successful global analyses including COMPASS data
Sivers effect is non-zero in DIS!
successful global analysis of HERMES (H) \& COMPASS (D)
... and suggests large antiquark contributions to orbital L latest HERMES data on Kaon produc ${ }^{n}$ seem to support this ...

