Nucleon Spin & Flavor Structure ... and Fragmentation too

N.C.R. Makins Univ of Illinois at Urbana-Champaign

- **Quark Models:** how to think about the proton?
- **Deep-Inelastic Scattering:** parton distribution functions and fragmentation functions
- The Spin Puzzle and quark polarization
- Single-Spin Asymmetries: new structures within the proton and the fragmentation process

The Wacky World of Quarks

The Quark Model

Hadrons are composed of quarks with :

1 flavor: u,c,t (charge +2/3) d,s,b (charge -1/3) **2** color: R,G,B **3** spin: 1/2

Each hadron observed in nature is white ("color singlet")

- Baryons 3-quark systems, with colors RGB
- Mesons quark + antiquark with colors CC

The **spectrum** of observed hadrons is (roughly) explained:

Mesons: Spin 0	Mesons: Spin 1	Baryons:
$\pi^+ ~~ u \overline{d}$	ρ^+ $u\overline{d}$	Spin 1/2
$\pi^- d\overline{u}$	$\rho^{-} d\overline{u}$	p uud
$\pi^0_{K^+} u\overline{u} \oplus d\overline{d}$	${ ho}^0 u\overline{u}\oplus d\overline{d}$	$\frac{1}{n}$ udd
$egin{array}{ccc} K^+ & u\overline{s} \ K^- & s\overline{u} \end{array}$	$K^{*+}u\overline{s}$	Σ^+uus
$\frac{K}{K^0} \frac{sa}{ds}$	$K^{*-}s\overline{u}$	$\Sigma^0 u ds$
$\frac{K}{\overline{K^0}} \frac{ab}{s\overline{d}}$	$rac{K^{st 0}}{\overline{K^{st 0}}} s \overline{d}$	$\Sigma^{-}dds$
$\eta u\overline{u}\oplus d\overline{d}\oplus s\overline{s}$	$\frac{K}{\phi} s\overline{s}$	$egin{array}{cc} \Lambda & uds \ \Xi^0 uss \end{array}$
$\eta' u\overline{u}\oplus d\overline{d}\oplus s\overline{s}$	$egin{array}{ccc} arphi & ss \ \omega & u\overline{u}\oplus d\overline{d}\oplus s\overline{s} \end{array}$	$\Xi^{-}dss$

Hadronic Multiplets

• MESONS = qq

SPIN 1 (11)

Murray Gell-Mann, 1964:

"A search for stable quarks ... at the highest energy accelerators would help to reassure us of the non-existence of real quarks."

Electron Scattering and Scaling

Parton Distribution Functions

Let's look *inside* the proton: **Deep-Inelastic Scattering** (DIS) with high energy beams \Rightarrow a rich substructure is revealed!

sea quarks : virtual quark-antiquark pairs that fluctuate in and out of the vacuum!

gluons : carriers of the strong force

 \boldsymbol{X} fraction of proton momentum carried by struck quark

parton distribution funcⁿ (number density for quark flavor q)

3 constituent quarks of mass $\approx 350 \text{ MeV}$

∞ many current quarks with bare masses $\approx 5 \text{ MeV}$

Quantum Chromodynamics

The Theory of the Strong Interaction

$$\mathcal{L}_{\text{QCD}} = -\Psi \left\{ \gamma_{\mu} [\partial_{\mu} - \frac{i}{2} g \lambda^{a} A^{a}_{\mu}(x)] + M \right\} \Psi - \frac{1}{4} \mathcal{F}^{a}_{\mu\nu} \mathcal{F}^{a}_{\mu\nu}$$

The End.

Bound States in QED and QCD

QED

relevant scales Perturbation theory works very well ✓ Non-relativistic quantum mechanics ok e.g. Hydrogen: binding E = 13.6 eV $\langle \langle M_{elec} \rangle = 511 \text{ keV}$

Coupling $\alpha = 1/137$ is weak at

QCD

Coupling $\alpha_s \underline{blows up}$ at relevant scales ! **X** Perturbation theory impossible X Bound systems inherently relativistic e.g. Proton: Mass = 938 MeV >> bare $m_{quark} = 5 \text{ MeV} !$

And here's something else we can't calculate ...

What Happens in a High Energy Collision

Confinement at Work !

Creation of hadrons from struck quark: the "fragmentation process"

Fragmentation Functions

describe **number density** of **hadrons** of type h and energy-fraction z produced from a **struck quark** of flavor q

$$z \equiv E_h/E_q$$

Symmetries: favored / disfavored FF's for pions:

Semi-Inclusive Deep-Inelastic Scattering (SIDIS)

In SIDIS, a hadron h is detected in coincidence with the scattered lepton:

Factorization of the cross-section:

$$d\sigma^h \sim \sum_q e_q^2 q(x) \cdot \hat{\sigma} \cdot D^{q \to h}(z)$$

The perturbative part

Cross-section for elementary photon-quark *subprocess*

Large energies → asymptotic freedom → can calculate!

momentum *distribution of quarks q* within their proton bound state

→ lattice QCD progressing steadily

- momentum *distribution of hadrons h* formed from quark *q*
 - ➡ not even lattice can help …

The Spin Puzzle

A particular puzzle: Where does the proton spin come from?

Quark polarization

$$\Delta \Sigma \equiv \int dx \left(\Delta u(x) + \Delta d(x) + \Delta s(x) + \Delta \overline{u}(x) + \Delta \overline{d}(x) + \Delta \overline{s}(x) \right) \approx 20\% \text{ only}$$

Oluon polarization

$$\Delta G \equiv \int dx \, \Delta g(x) \quad \mathbf{?}$$

Orbital angular momentum

$$L_z \equiv L_q + L_g$$

In friendly, **non-relativistic** bound states like atoms & nuclei (& constituent quark model), particles are in *eigenstates of L*

Not so for bound, *relativistic Dirac particles* ... Noble "*l*" is *not a good quantum number*

Meson Cloud Models

Quark sea from cloud of 0⁻ mesons:

Chiral-Quark Soliton Model

 $\overline{d} > \overline{u}$

- quark degrees of freedom in a pion mean-field
- nucleon = chiral soliton
- one parameter: dynamically-generated quark mass
- expand in $1/N_{c}$

'tHooft instanton vertex

 $\sim \overline{u}_R u_L d_R d_L$

Spin Structure: SU(6) Proton Wave Function in CQM

The 3 quarks are identical fermions $\Rightarrow \psi$ antisymmetric under exchange

 $\psi = \psi(\text{color}) * \psi(\text{space}) * \psi(\text{spin}) * \psi(\text{flavor})$

Olor: All hadrons are color singlets = **antisymmetric**

 ψ (color) = 1/ $\sqrt{6}$ (RGB - RBG + BRG - BGR + GBR - GRB)

2 Space: proton has $l = l' = 0 \rightarrow \psi(\text{space}) = \text{symmetric}$

3 Spin: $2 \otimes 2 \otimes 2 = (3_S \oplus 1_A) \otimes 2 = 4_S \oplus 2_{MS} \oplus 2_{MA}$ • 4_S symmetric states have spin 3/2, e.g. $\left|\frac{3}{2}, +\frac{3}{2}\right\rangle = \uparrow \uparrow \uparrow$

> • 2_{MS} and 2_{MA} have spin 1/2 and **mixed symmetry**: S or A under exchange of <u>first 2</u> quarks only, e.g.

$$\left|\frac{1}{2},+\frac{1}{2}\right\rangle_{\rm MS} = (\uparrow\downarrow\uparrow+\downarrow\uparrow\uparrow-2\uparrow\uparrow\downarrow)/\sqrt{6} \qquad \left|\frac{1}{2},+\frac{1}{2}\right\rangle_{\rm MA} = (\uparrow\downarrow\uparrow-\downarrow\uparrow\uparrow)/\sqrt{2}$$

Flavor: symmetry groups SU(2)-spin and SU(3)-color are exact ...

- strong force is *flavor blind*
- constituent q masses *similar*: $m_u, m_d \approx 350$ MeV, $m_s \approx 500$ MeV

 \rightarrow SU(3)-flavor is <u>approximate</u> for u, d, s

SU(3)-flavor gives $3 \otimes 3 \otimes 3 = 10_{S} \oplus 8_{MS} \oplus 8_{MA} \oplus 1_{A}$

Proton: $\psi(s=1/2)$ from spin $2_{MS}^2 2_{MA} \otimes \psi(uud)$ from flavor $8_{MS}^8 8_{MA}$

$$|p^{\uparrow}\rangle = (u^{\uparrow}u^{\downarrow}d^{\uparrow} + u^{\downarrow}u^{\uparrow}d^{\uparrow} - 2u^{\uparrow}u^{\uparrow}d^{\downarrow} + 2 \text{ permutations})/\sqrt{18}$$

Count the number of quarks with spin up and spin down:

Quark contributions to proton spin are:

$$\langle p^{\uparrow} | \hat{N}(\boldsymbol{u}^{\uparrow}) | p^{\uparrow} \rangle = \frac{30}{18} = \frac{5}{3} \qquad \langle p^{\uparrow} | \hat{N}(\boldsymbol{d}^{\uparrow}) | p^{\uparrow} \rangle = \frac{6}{18} = \frac{1}{3} \\ \langle p^{\uparrow} | \hat{N}(\boldsymbol{u}^{\downarrow}) | p^{\uparrow} \rangle = \frac{6}{18} = \frac{1}{3} \qquad \langle p^{\uparrow} | \hat{N}(\boldsymbol{d}^{\downarrow}) | p^{\uparrow} \rangle = \frac{12}{18} = \frac{2}{3} \\ \Delta \boldsymbol{u} = N(\boldsymbol{u}^{\uparrow}) - N(\boldsymbol{u}^{\downarrow}) = +\frac{4}{3} \qquad \Delta \boldsymbol{d} = N(\boldsymbol{d}^{\uparrow}) - N(\boldsymbol{d}^{\downarrow}) = -\frac{1}{3}$$

All spin present & accounted for!

 $\Rightarrow \Delta \Sigma = \Delta u + \Delta d + \Delta s = 1$

CQM / SU(6) Scorecard

Baryon Magnetic Moments		В	B Magnetic Moment		Expt	
			p	$(4\mu_u - \mu_d)/3$	2.7	2.79
$\mid \mu_B = \sum \mu_q \Delta q \mid q$	whore	$\mu_q \sim e_q/m_q$	n	$(4\mu_{d} - \mu_{u})/3$	-1.8	-1.91
r_{a} where a		Σ^+	$(4\mu_u - \mu_s)/3$	2.6	2.48	
	l		Σ^{-}	$(4\mu_d - \mu_s)/3$	-1.0	-1.16
 take constituer 	nt quark	k masses	Ξ^0	$(4\mu_s - \mu_u)/3$	-1.4	-1.25
$ullet$ take $\mu_u=-2\mu_d$, $\mu_s=2\mu_d/3$		Ξ^-	$(4\mu_s-\mu_d)/3$	-0.5	-0.68	
• take $\mu_{ll} = 2$	p_a, p_s	$=2\mu_d/J$	Λ	μ_s		-0.61
and fit μ_d t	o data		$\Lambda\Sigma^0$	$(\mu_d - \mu_u)/\sqrt{3}$	-1.6	-1.60
/ /						

Note: $\mu_B \sim (e_q/m_q) \Delta q \sim |e_q| (\Delta q - \Delta \bar{q})$

 \Rightarrow observable sensitive to valence quarks

× Hyperon β-Decay	Decay Parameter	SU(6)	Expt			
 parity-violating weak decay 	$F = (\Delta u - \Delta s)/2$	0.67	0.46			
 decay products parallel to spin 						
• sensitive to $\sum (\Delta q + \Delta ar q)$	$D = (\Delta u - 2\Delta d + \Delta s)/2$	1.00	0.80			
q						
⇒ Constutent Quark Model lacks sea quarks						

N.C.R. Makins, NNPSS, July 28, 2006

Spin Structure of the Proton

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

Parton Distribution Functions

unpolarized: $q(x) = q^{\uparrow}(x) + q^{\downarrow}(x)$ polarized: $\Delta q(x) = q^{\uparrow}(x) - q^{\downarrow}(x)$

Constituent Quark Model

$$\Delta u = +\frac{4}{3}, \ \Delta d = -\frac{1}{3} \rightarrow \Delta \Sigma = 1$$

Relativistic Quark Model

$$\Delta \Sigma \simeq 0.60 - 0.75 \qquad L_q = \frac{1}{2}(1 - \Delta \Sigma)$$

Polarized Deep-Inelastic Scattering

From NLO-QCD analysis of inclusive DIS measurements + hyperon β-decay ...

•
$$\Delta\Sigma = 0.19 \pm 0.07$$
 (MS scheme)
The Spin Crizis!

• $\Delta G = 1.0^{+1.9}_{-0.6}$ (AB scheme)

 \rightarrow barely constrained, value > 0 favored

Anti-quark Spin in the Proton Sea

Meson Cloud Models

Li, Cheng, hep-ph/9709293

vector mesons can generate a small polarization.

Chiral-Quark Soliton Model

Light sea quarks polarized:

$$\Delta \overline{u} \simeq -\Delta \overline{d} > 0$$

Goeke et al, hep-ph/0003324

Instanton Mechanism

'tHooft instanton vertex $\sim \overline{u}_R u_L \overline{d}_R d_L$ transfers helicity from valence uquarks to $d\overline{d}$ pairs Quark Helicity Distributions $\Delta q(x)$: Results

Spin-Dependent Deep Inelastic Scattering (DIS)

Polarized lepton beams incident on polarized nucleon targets

Polarized Semi-Inclusive DIS (SIDIS)

Purity matrix P_q^h = probability that hadron h came from struck quark q

Purities are spin-independent ... compute using Monte Carlo tuned to unpolarized data

Final ∆q Measurement from HERMES Run 1

New Analysis: Isoscalar extraction of Δ **s**

Single-Spin Asymmetries

Huge single-spin asymmetry !

- Opposite sign for $\pi^+ = u \bar{d}$ than for $\pi^- = d \bar{u}$
- Effect larger for forward production
- Observable: $\vec{S}_{\text{beam}} \cdot (\vec{p}_{\text{beam}} \times \vec{p}_{\pi})$ odd under naive Time-Reversal

Surprising observation! Why?

SSA's at high-energies

T-odd observables

Now confirmed at STAR at much higher energies

$\begin{array}{l} \text{SSA observables} \sim \vec{J} \cdot (\vec{p_1} \times \vec{p_2}) \\ \Rightarrow \textit{ odd } \textit{ under naive } \textit{ time-reversal} \end{array}$

Since QCD amplitudes are T-even, must arise from **interference** between **spin-flip** and non-flip amplitudes with **different phases**

Can't come from perturbative subprocess xsec:

• q helicity flip suppressed by m_q/\sqrt{s}

• need α_s -suppressed loop-diagram to generate necessary phase

At hard (enough) scales, SSA's must arise from soft physics: T-odd distribution / fragmentation functions SSA's at high-energies

Now confirmed at STAR at much higher energies

T-odd observables

E704 Possible Mechanism #1: The "Collins Effect"

Transversity: The Third Structure Function

Proton Matrix Elements vector charge $\langle PS|\overline{\psi}\gamma^{\mu}\psi|PS\rangle = \int_{0}^{1} dx \ q(x) - \overline{q}(x) \rightarrow \#$ valence quarks axial charge $\langle PS|\overline{\psi}\gamma^{\mu}\gamma_{5}\psi|PS\rangle = \int_{0}^{1} dx \ \Delta q(x) + \Delta \overline{q}(x) \rightarrow \text{net quark spin}$ tensor charge $\langle PS|\overline{\psi}\sigma^{\mu\nu}\gamma_{5}\psi|PS\rangle = \int_{0}^{1} dx \ \delta q(x) - \delta \overline{q}(x) \rightarrow ???$

Forward Helicity Amplitudes

(optical theorem applied to DIS)

Properties of Transversity

In Non-Relativistic Case, boosts and rotations commute:

... but bound quarks are highly *relativistic* in nature

No Gluons

Angular momentum conservation: $\Lambda - \lambda = \Lambda' - \lambda'$ \Rightarrow transversity has *no gluon* component \Rightarrow different Q^2 *evolution* than $\Delta q(x)$

Chiral Odd

Helicity flip amplitudes occur only at $\mathcal{O}(m_q/Q)$ in inclusive DIS ...

but they are observable in e.g. semi-inclusive reactions

 $\delta q(x) = \Delta q(x)$

Properties of Transversity

In Non-Relativistic Case, boosts and rotations commute:

... but bound quarks are highly *relativistic* in nature

No Gluons

Angular momentum conservation: $\Lambda - \lambda = \Lambda' - \lambda'$ \Rightarrow transversity has *no gluon* component \Rightarrow different Q^2 *evolution* than $\Delta q(x)$

Chiral Odd

Helicity flip amplitudes occur only at $\mathcal{O}(m_q/Q)$ in inclusive DIS ...

$$\delta q(x) = \Delta q(x)$$

E704 Possible Mechanism #2: The "Sivers Effect"

 $D_1(z)$

Need the ordinary fragmentation function

... with a new, **T-odd "Sivers" distribution function**

Phenomenological model of Meng & Chou:

Forward π+ produced from **orbiting valence-u quark** by recombination at *front surface* of beam protons

 $f_{1T}^{\perp}(x,k_T)$

Functions surviving on integration over Transverse Momentum

The others are sensitive to *intrinsic* k_{T} in the nucleon & in the fragmentation process

Mulders & Tangerman, NPB 461 (1996) 197

Distribution Functions

Fragmentation Functions

Functions Odd under naive Time Reversal

One T-odd function required to produce *single-spin asymmetries* in SIDIS

The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f_{1T}^{\perp} <u>must</u> arise from <u>interference</u> ... but a distribution function is just a forward scattering amplitude, how can it contain an interference?

Brodsky, Hwang, & Schmidt 2002

It <u>looks</u> like higher-twist ... but <u>no</u>, these are <u>soft gluons</u> = "gauge links" required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are *final (or initial) state interactions* ... and may be *process dependent* ! => new *universality issues*

In Search of T-Odd Functions: HERMES Run 2

Electro-Production of Pions with Tranvserse Target

Switched from longitudinal to **transverse** target polarization in 2002 ... Measure dependence of pion production on **two azimuthal angles**

Separating the Collins & Sivers Mechanisms

SSA Results 1: Collíns Effect

Collins Moments for $\pi^+ \pi^-$ from 2002–2004 H $^{\uparrow}$ Data

- First evidence for non-zero Collins function ... and transversity!
- Positive for π⁺...
 Negative and <u>larger</u> for π⁻...
- Systematic error bands include acceptance and smearing effects, and contributions from unpolarized <cos(2φ)> and <cos(φ)> moments

Understanding the Collins Effect

The Collins function exists! \rightarrow **spin-orbit** correlations in π formation

Is the Artru mechanism responsible?

Why are the Collins π^- asymmetries so large?

DIS on proton target always dominated by *u-quark scattering*

Data indicate disfavored CollinsFF is large & negative !

Interpretation of Collins Results

Collins Global Fit: HERMES (H target) & COMPASS (D target)

Efremov, Goeke, Schweitzer, hep-ph/0603054

Collins Global Fit: HERMES (ep) & BELLE (e+e-)

Efremov, Goeke, Schweitzer, hep-ph/0603054

N.C.R. Makins, NNPSS, July 28, 2006

SSA Results 2: Sívers Effect

Sivers Moments for $\pi^+ \pi^-$ from 2002–2004 H $^{\uparrow}$ Data

- First evidence for non-zero Sivers function!
- ⇒ presence of non-zero quark
 orbital angular momentum!
- Positive for π⁺...
 Consistent with zero for π⁻...
- Systematic error bands include acceptance and smearing effects, and contributions from unpolarized <cos(2\$\oplus)> and <cos(\$\oplus)> moments

Sivers Global Fit: HERMES & COMPASS

Vogelsang & Yuan, PRD 72 (2005) 054028

Sivers Moments for Kaons from 2002–2004 Data

Effect <u>seems **larger**</u> for K⁺ = us than π^+ = ud at $x \approx 0.1 \dots !$

→ significant *antiquark* Sivers functions? and strongly flavor-dependent?

Conclusions

Quark and gluon polarization

quark polarization is **positive**, but much lower than CQM / bag model expections

anti-quark polarization consistent with zero within measured range, including improved verification of $\Delta s \approx 0$ data coming in from COMPASS and RHIC-Spin on ΔG ... so far a modest, positive value favoured ...

Collins fragmentation function

- opposite sign and similar magnitude to favored function sign of effect supports ³P₀ picture of color string breaking
- result now **confirmed** by new data from **BELLE**,
- + successful global analyses including COMPASS data

Sivers effect is non-zero in DIS!

successful global analysis of **HERMES** (H) & **COMPASS** (D) ... and suggests large **antiquark** contributions to **orbital** *L*

latest HERMES data on Kaon producⁿ seem to support this ...